Assay method for polymer-controlled antibiotic release from allograft bone to target orthopaedic infections - biomed 2010.
نویسندگان
چکیده
To mitigate and circumvent orthopaedic-associated infection, systematic oral and parenteral antibiotic therapy is often used; however, efficacy is limited due to dosing, systemic side-effects, patient compliance, effective delivery, treatment length, and resistant bacteria. A more effective method may be sustained local drug delivery of antibiotics at the wound site, using delivery vehicles that control release rates. In the case of bone for example, this could be clinically familiar bone graft. Unfortunately, without a rate-control strategy, local antibiotic delivery from allograft displays a prominent burst release: a large amount of drug payload is released as a bolus within 72 hours and depleted. Although his offers effective immediate killing, persitor bacteria remain an infection risk. Notably, drug resistance is a problem at reduced antibiotic levels. To allow better local dosing modulation, a degradable polycaprolactone (PCL) polymer allograft coating is used to modulate local delivery of the antibiotic, tobramycin. This polymer/antibiotic hybrid coats the porous structure of the cancellous bone graft, providing a substantial drug reservoir and allowing controlled release of antibiotic over extended time. PCL/tobramycin-coated bone fragments of different PCL molecular weights and variable drug loads are assayed in vitro for drug release. Tobramycin concentration is determined based on derivatization of its 5 primary amine groups with a fluorescent reagent, phthaldialdehyde (OPA). Tobramycin concentrations in release media can be calculated based on a standard curve with a reasonable accuracy and dynamic range.
منابع مشابه
Magnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin
Objective(s): Researchers have intended to reformulate drugs so that they may be more safely used in human body. Polymer science and nanotechnology have great roles in this field. The aim of this paper is to introduce an efficient drug delivery vehicle which can perform both targeted and controlled antibiotic release using magnetic nanoparticles grafted pH-responsive polymer.<s...
متن کاملPoly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone coated Magnetic nanoparticles as a pH-responsive magnetic Nano-carrier for controlled delivery of antibiotics
Objective(s): Pharmaceutical industries are leading to improved medications that can target diseases more effectively and precisely. Researchers have intended to reformulate drugs so that they may be more safely used in human body. The more targeted a drug is, the lower its chance of triggering drug resistance, a cautionary concern surrounding the use of broad-spectrum antibiotics. The aim of t...
متن کاملLocal delivery of tobramycin from injectable biodegradable polyurethane scaffolds.
Infections often compromise the healing of open fractures. While local antibiotic delivery from PMMA beads is an established clinical treatment of infected fractures, surgical removal of the beads is required before implanting a bone graft. A more ideal therapy would comprise a scaffold and antibiotic delivery system administered in one procedure. Biodegradable polyurethane (PUR) scaffolds have...
متن کاملAn Osteoconductive Antibiotic Bone Eluting Putty with a Custom Polymer Matrix
With the rising tide of antibiotic resistant bacteria, extending the longevity of the current antibiotic arsenal is becoming a necessity. Developing local, controlled release antibiotic strategies, particularly for difficult to penetrate tissues such as bone, may prove to be a better alternative. Previous efforts to develop an osteoconductive local antibiotic release device for bone were create...
متن کاملIncreased Release Time of Antibiotics from Bone Allografts through a Novel Biodegradable Coating
The use of bone allografts is contraindicated in septic revision surgery due to the high risk of graft reinfection. Antibiotic release from the graft may solve the problem and these combinations can theoretically be used for prevention or even therapy of infection. The present study investigated whether amoxicillin, ciprofloxacin, and vancomycin alone or in combination with chitosan or alginate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical sciences instrumentation
دوره 46 شماره
صفحات -
تاریخ انتشار 2010